Careertail
About UsCoursesCareer PathsBlogOpportunities
Log In
Courses>Programming Languages>Machine Learning with Tree-Based Models in Python
Data ScienceMachine Learning with Tree-Based Models in Python
Price:Paid
Length:5 Hours
Language:English
Content type:video
level:advanced
Updated:04 March 2024
Published:12 September 2022
Similar courses
Opportunities
Courses>Programming Languages>Machine Learning with Tree-Based Models in Python
Machine Learning with Tree-Based Models in Python
5 Hours
62017 students
Syllabus
Classification and Regression Trees (CART) are a set of supervised learning models used for problems involving classification and regression. In this chapter, you'll be introduced to the CART algorithm.
The bias-variance tradeoff is one of the fundamental concepts in supervised machine learning. In this chapter, you'll understand how to diagnose the problems of overfitting and underfitting. You'll also be introduced to the concept of ensembling where the predictions of several models are aggregated to produce predictions that are more robust.
Bagging is an ensemble method involving training the same algorithm many times using different subsets sampled from the training data. In this chapter, you'll understand how bagging can be used to create a tree ensemble. You'll also learn how the random forests algorithm can lead to further ensemble diversity through randomization at the level of each split in the trees forming the ensemble.
Boosting refers to an ensemble method in which several models are trained sequentially with each model learning from the errors of its predecessors. In this chapter, you'll be introduced to the two boosting methods of AdaBoost and Gradient Boosting.
The hyperparameters of a machine learning model are parameters that are not learned from data. They should be set prior to fitting the model to the training set. In this chapter, you'll learn how to tune the hyperparameters of a tree-based model using grid search cross validation.
Similar courses
Opportunities
Make the most out of your online education
Careertail
Copyright © 2021 Careertail.
All rights reserved
Quick Links
Get StartedLog InAbout UsCourses
Company
BlogContactsPrivacy PolicyCookie PolicyTerms and Conditions
Stay up to date
Trustpilot
Careertail
Courses>Programming Languages>Machine Learning with Tree-Based Models in Python
Data ScienceMachine Learning with Tree-Based Models in Python
Price:Paid
Length:5 Hours
Language:English
Content type:video
level:advanced
Updated:04 March 2024
Published:12 September 2022
Similar courses
Opportunities
Courses>Programming Languages>Machine Learning with Tree-Based Models in Python
Machine Learning with Tree-Based Models in Python
5 Hours
62017 students
Syllabus
Classification and Regression Trees (CART) are a set of supervised learning models used for problems involving classification and regression. In this chapter, you'll be introduced to the CART algorithm.
The bias-variance tradeoff is one of the fundamental concepts in supervised machine learning. In this chapter, you'll understand how to diagnose the problems of overfitting and underfitting. You'll also be introduced to the concept of ensembling where the predictions of several models are aggregated to produce predictions that are more robust.
Bagging is an ensemble method involving training the same algorithm many times using different subsets sampled from the training data. In this chapter, you'll understand how bagging can be used to create a tree ensemble. You'll also learn how the random forests algorithm can lead to further ensemble diversity through randomization at the level of each split in the trees forming the ensemble.
Boosting refers to an ensemble method in which several models are trained sequentially with each model learning from the errors of its predecessors. In this chapter, you'll be introduced to the two boosting methods of AdaBoost and Gradient Boosting.
The hyperparameters of a machine learning model are parameters that are not learned from data. They should be set prior to fitting the model to the training set. In this chapter, you'll learn how to tune the hyperparameters of a tree-based model using grid search cross validation.
Similar courses
Opportunities
Make the most out of your online education
Careertail
Copyright © 2021 Careertail.
All rights reserved
Quick Links
Get StartedLog InAbout UsCourses
Company
BlogContactsPrivacy PolicyCookie PolicyTerms and Conditions
Stay up to date
Trustpilot